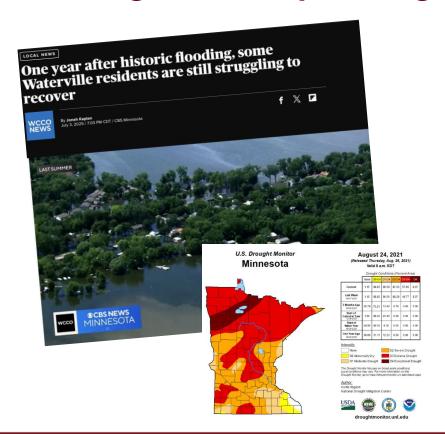
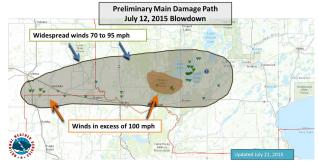
Minnesota's Changing Water Future

Research, Insights and Opportunities

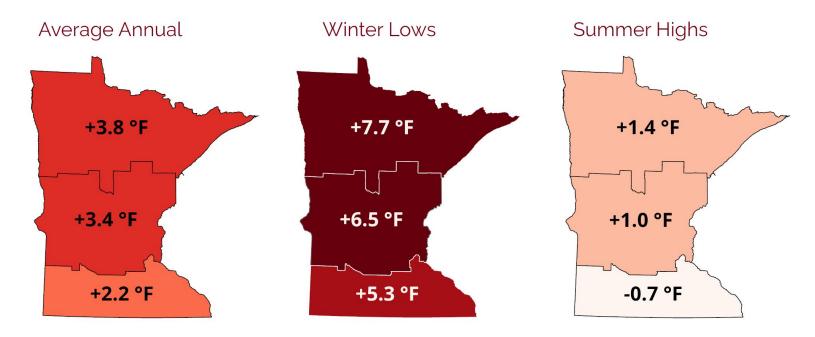



Dr. Heidi Roop

Extension Specialist & Associate Professor
Director, University of Minnesota Climate Adaptation Partnership **hroop@umn.edu**

Photos: UMN Extension & H. Roop

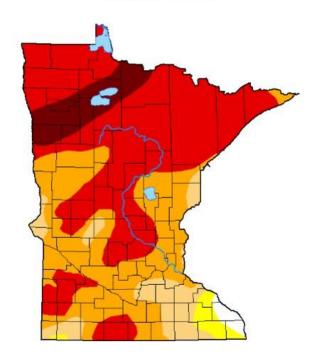
Growing Risks. Expanding Needs.



Observed Changes in Precipitation

Heavy rains are now more common in Minnesota and more intense than at any time on record. We have documented increases in 1-inch rains, 3-inch rains, and the size of the heaviest rainfall of the year. Since 2000, Minnesota has seen a significant uptick in devastating, large-area extreme rainstorms.

Observed Temperature Change in Minnesota (1895-2024)


Average annual temperature has increased by 3.2°F

Data: UMN CAP & MN DNR, 2024

2021 Drought

U.S. Drought Monitor
Minnesota

August 24, 2021

(Released Thursday, Aug. 26, 2021)
Valid 8 a.m. EDT

Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	1.15	98.85	96.58	87.63	57.65	8.07
Last Week 08-17-2021	1.15	98.85	96.56	88.29	49.77	8.07
3 Month's Ago 05-25-2021	26.79	73.21	13.42	0.18	0.00	0.00
Start of Calendar Year	1.60	98.40	23.40	0.28	0.00	0.00
Start of Water Year 09-25-2020	54.95	45.05	8.39	0.00	0.00	0.00
One Year Ago	58.89	31,11	12.23	0.00	0.00	0.00

None	D2 Severe Drought
D0 Abnormally Dry	D3 Extreme Drought
D1 Moderate Drought	D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions.
Local conditions may vary: For more information on the
Drought Monitor, go to https://droughtmonitor.unl.edu/About.asp

Author

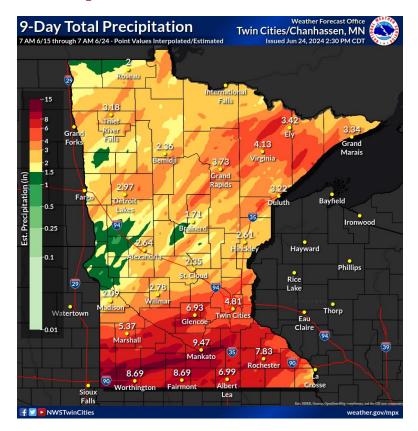
Curtis Rigant

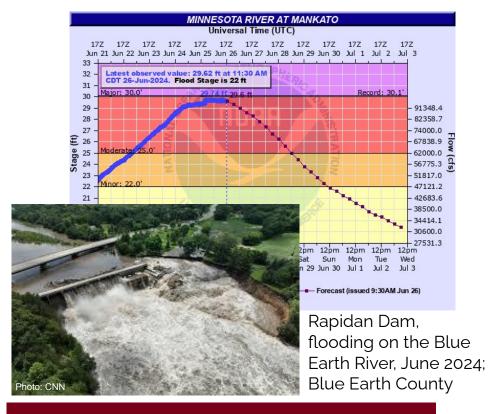
National Drought Mitigation Center

droughtmonitor.unl.edu

July 2021 was the driest on record for the northern Red River Valley

Estimated costs of billion-dollar drought events to affect Minnesota from 1980 to 2024 (CPI-Adjusted): \$10-20 Billion


NOAA, 2025



University of Minnesota

Driven to Discover™

2024 June Floods

CPI-Adjusted Estimated Cost: \$1.1 billion (total flood events 1980-2024: \$5-10 billion)

NOAA, 2025

Across the Midwest, transitions from wet to dry extremes

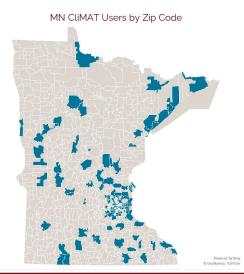
are happening more quickly and more frequently.

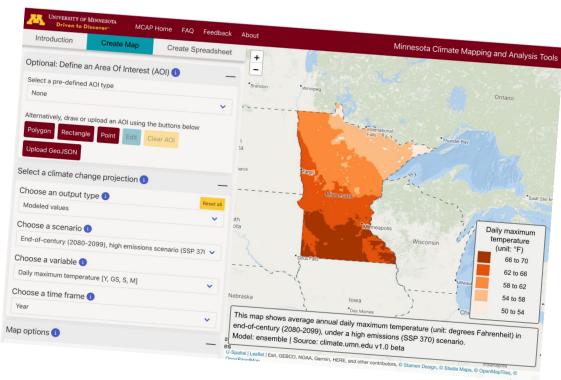
Photos: UMN Extension; Data: www.drought.gov

Impacts Extend Beyond Our State Border

"Nearly all of the Mississippi River basin has seen below-normal rainfall since late August...The timing is bad because barges are busy carrying recently harvested corn and soybeans up and down the river."

Associated Press, October 6th, 2022

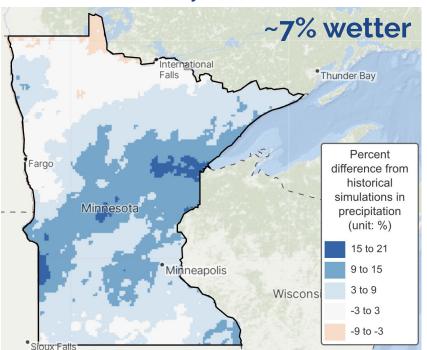

Weather and climate extremes are causing economic and societal impacts across national and state boundaries through supply-chains, markets, and natural resource flows.

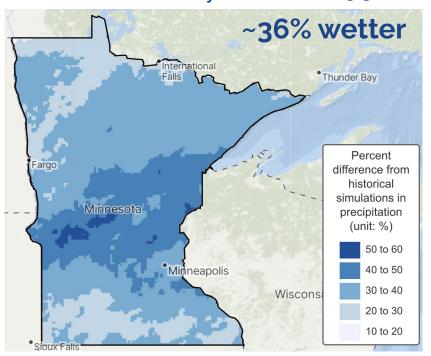

IPCC, 2022, Photo: AP, Thomas Berner

The rearview mirror is no longer sufficient to plan & prepare.

Minnesota's Localized Climate Projections

MN Climate Mapping and Analysis Tools - 2.5-mile scale projections out to 2100

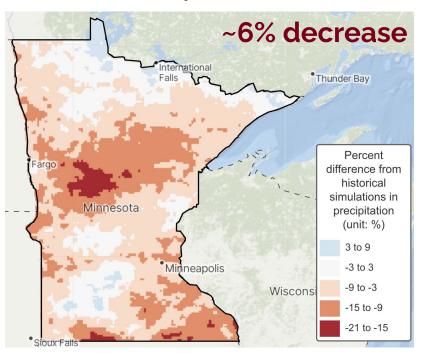



app.climate.umn.edu

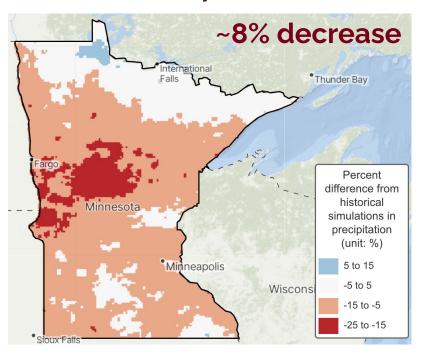
Average percent change in spring precipitation

Mid-century (2040-2059)

End-of-century (2080-2099)


very high emissions (SSP585); relative to 1995-2014

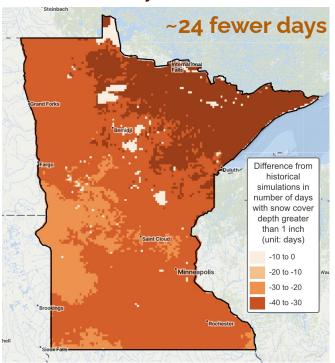
Data: UMN Climate Adaptation Partnership, 2025



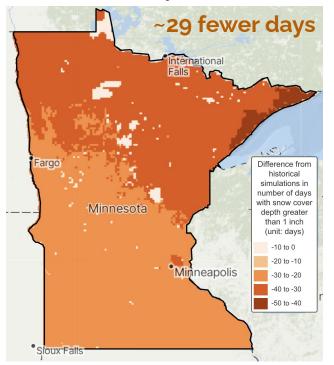
Average percent change in summer precipitation

Mid-century (2040-2059)

End-of-century (2080-2099)


very high emissions (SSP585); relative to 1995-2014

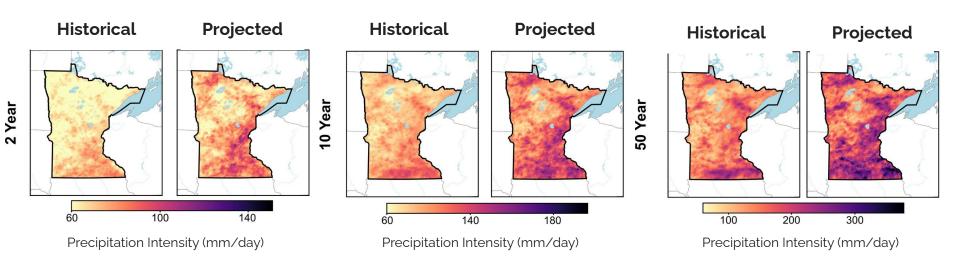
Data: UMN Climate Adaptation Partnership, 2025



Changing Winters - Days with snow cover exceeding 1 inch

Mid-century (2040-2059)

End-of-century (2080-2099)


high emissions (SSP370); relative to 1995-2014

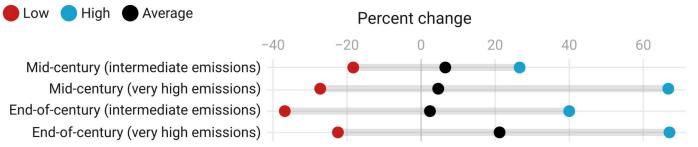
Data: UMN Climate Adaptation Partnership, 2025

Estimating Future Precipitation Extremes for Stormwater Management & Infrastructure Design

Intensity, duration and frequency maps for 2-, 10-, and 50-year 1-day duration events

Projected end-of-century values based on SSP 3-7.0 scenario.

Preliminary Data. Subject to Change



Future Recharge in Minnesota's Groundwater Management Areas

Projected future changes in net infiltration, a precursor of groundwater recharge, averaged across Minnesota DNR's three Groundwater Management Areas.

Historical period is 1995-2014, mid-century is 2040-2059, and end-of-century is 2080-2099. Intermediate emissions scenarios is SSP2-4.5 and very high emissions scenario is SSP5-8.5. Minnesota DNR's three groundwater management areas are Bonanza Valley, Straight River, and the North and East Metro.

Source: University of Minnesota Climate Adaptation Partnership and USGS • Created with Datawrapper

Groundwater recharge in some of our key agricultural regions is expected to shift toward the extremes to **much higher** *and* **much lower**.

Areas of stressed groundwater are anticipated to be even more stressed.

DNR Groundwater Management Areas (GWMA)

Moorhead

Straight River GWMA

Duketh

North & East Metro GWMA

Minnesota

Preliminary Data. Subject to Change

Navigating Shifting Risks & Baselines

- Warming has shifted the baseline against which we manage Minnesota's hazards and risks – from climatic to economic.
- Many Minnesotans are already bearing the costs of our shifting weather & climate risks.
- Policy & governance conditions across scales of governance are a key driver of future risk management decisions.
- A proactive stance in policy & regulation will limit inequities and impacts across communities & economic sectors.

We must reduce risks through adaptation.

Adaptation can bring multiple benefits:

improved agricultural productivity, innovation, health, food security, livelihood, biodiversity conservation, and reduction of risks & damages.

Long-term planning and accelerated implementation, particularly in the next decade, is important to close adaptation gaps.

IPCC, 2022

Dr. Heidi Roop

Extension Specialist & Associate Professor University of Minnesota hroop@umn.edu

climate.umn.edu

